首页> 外文OA文献 >Phase stability and physical properties of nanolaminated materials from first principles
【2h】

Phase stability and physical properties of nanolaminated materials from first principles

机译:从第一原理看纳米层合材料的相稳定性和物理性质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The MAX phase family is a set of nanolaminated, hexagonal materials typically comprised of three elements: a transition metal (M), an A-group element (A), and carbon and/or nitrogen (X). In this thesis, first-principles based methods have been used to investigate the phase stability and physical properties of a number of MAX and MAX-like phases. Most theoretical work on MAX phase stability use the constraint of 0 K conditions, due to the very high computational cost of including temperature dependent effects such as lattice vibrations and electronic excitations for all relevant competing phases in the ternary or multinary chemical space. Despite this, previous predictions of the existence of new MAX phases have to a large extent been experimentally verified. In an attempt to provide a possible explanation for this consistency, and thus help strengthen the confidence in future predictions, we have calculated the temperature dependent phase stability of Tin+1AlCn, to date the most studied MAX phases. We show that both the electronic and vibrational contribution to the Gibbs free energies of the MAX phases are  cancelled by the corresponding contributions to the Gibbs free energies of the competing phases. We further show that this is the case even when thermal expansion is considered. We have also investigated the stability of two hypothetical MAX-like phases, V2Ga2C and (Mo1-xVx)2Ga2C, motivated by a search for ways to attain new two-dimensional MAX phase derivatives, so-called MXenes. We predict that it is possible to synthesize both phases. For x≤0.25, stability of (Mo1-xVx)2Ga2C is indicated for both ordered and disordered solid solutions on the M sublattice. For x=0.5 and x≥0.75, stability is only indicated for disordered solutions. The ordered solutions are stable at temperatures below 1000 K, whereas stabilization of the disordered solutions requires temperatures of up to 2100 K, depending on the V concentration. Finally, we have investigated the electronic, vibrational, and magnetic properties of the recently synthesized MAX phase Mn2GaC. We show that the electronic band structure is anisotropic, and determine the bulk, shear, and Young’s modulus to be 157, 93, and 233 GPa, respectively, and Poisson’s ratio to be 0.25. We further predict the magnetic critical order-disorder temperature of Mn2GaC to be 660 K. We base the predictions on Monte Carlo simulations of a bilinear Heisenberg Hamiltonian constructed from magnetic exchange interaction parameters derived using two different supercell methods: the novel magnetic direct cluster averaging method (MDCA), and the Connolly-Williams method (CW). We conclude that CW is less computationally expensive than MDCA for chemically and topologically ordered phases such as Mn2GaC.
机译:MAX相族是一组纳米叠层的六边形材料,通常由三种元素组成:过渡金属(M),A组元素(A)和碳和/或氮(X)。在本文中,基于第一原理的方法已用于研究许多MAX和类似MAX的相的相稳定性和物理性质。关于MAX相稳定性的大多数理论工作都使用0 K条件的约束,这是因为三元或多元化学空间中所有相关竞争相包括与温度相关的效应(如晶格振动和电子激发)的计算成本很高。尽管如此,在很大程度上已经通过实验验证了对新的MAX相存在的先前预测。为了为这种一致性提供一个可能的解释,从而有助于增强对未来预测的信心,到目前为止,我们已经计算出Tin + 1AlCn的温度相关相稳定性,这是迄今为止研究最多的MAX相。我们表明,电子和振动对MAX相的Gibbs自由能的贡献都被竞争相对Gibbs自由能的对应贡献抵消了。我们进一步表明,即使考虑了热膨胀,情况也是如此。我们还研究了两个假设的类似于MAX的相V2Ga2C和(Mo1-xVx)2Ga2C的稳定性,其动机是寻求获得新的二维MAX相导数的方法,即所谓的MXenes。我们预测有可能合成两个阶段。对于x≤0.25,对于M亚晶格上的有序和无序固溶体,都表明了(Mo1-xVx)2Ga2C的稳定性。对于x = 0.5和x≥0.75,仅对无序溶液表示稳定性。有序溶液在低于1000 K的温度下是稳定的,而无序溶液的稳定化需要高达2100 K的温度,具体取决于V浓度。最后,我们研究了最近合成的MAX相Mn2GaC的电子,振动和磁性。我们证明电子带结构是各向异性的,并确定其体积,剪切和杨氏模量分别为157、93和233 GPa,泊松比为0.25。我们进一步预测Mn2GaC的磁性临界有序温度为660K。我们基于双线性Heisenberg哈密顿量的蒙特卡罗模拟的预测,该双线性Heisenberg哈密顿量是根据使用两种不同的超级单元方法得出的磁交换相互作用参数构造而成的:新颖的磁直接簇平均方法(MDCA)和Connolly-Williams方法(CW)。我们得出结论,对于化学和拓扑有序相(例如Mn2GaC),CW在计算上比MDCA便宜。

著录项

  • 作者

    Thore, Andreas;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号